

IHP in a Nutshell

The Institute

- Founded in 1991; successor institution to the former institute of the East German Academy with extensive experience in silicon microelectronics
- 200 employees from 16 countries
- Member of the Gottfried Wilhelm Leibniz Society (WGL)

Mission

- Strengthen the competitive position of the German and European microelectronic and communication research
- Act as an innovation center, leading research results towards prototypes
- Enhance the attractiveness of the region as location for high technology

Facilities

Complete innovation chain from materials to systems, including class-1 c.leanroom, 0.13 µm capable pilotline

competencies

- Systems for wireless communication
- RF circuit design
- Extension of silicon CMOS technologies
- Materials for microelectronic technology

Strategy

- Create value through innovation
- Focus on solutions for wireless & broadband communications
- Development of forward-looking technologies and system-level prototypes
- Strategic partnerships

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.lhp-microelectronics.com

© 2005 - All rights reserved

Outline

- Motivation
- Communication Protection Means
- · Application of Crypto Means
- Energy Issues
- · Challenges Ahead

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2005 - All rights reserved

Motivation: B2C

- Privacy ranked issue the #1 Internet issue for consumers (Business Week survey 1998)
- 87% of experienced Internet users concerned about online privacy invasion (AT&T survey 1999)
- 59% want more federal privacy legislation (Business Week survey 2001)
- USD 15 billion could be lost by online retailers in 2001 because of consumers privacy concerns (Forrester research
- 34% of Internet users would start purchasing from online retailers if privacy was guaranteed (Forrester research 2001)
- · 27% abandoned online purchases because of privacy concerns (Cyber Dialog survey 2001)

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

© 2005 - All rights reserved

Location-aware applications • Location aware mall - Metro Future-Store Location aware shopping system Finds location of products

Ubiquitous Mall

Mobile communication + sensors/RFID tags

communication

Source: www.teco.edu Registers what you buy???

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

© 2005 - All rights reserved

Cryptography: THE KEY enabler for Secure Communication

- · Public key cryptography:
 - provides means to realize: Digital signatures, Key exchange computational burden high
- · Secret key cryptography:

provides relatively efficient means to en-/decrypt bulk data transfer. computational burden low

• Anonymous communication:

protection against message flow analysis: crowds, onion routing and mix nets computational burden very high

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2005 - All rights reserved

Crypto Hardware: Reducing the Energy Consumption

Performance of Specialized Hardware vs. Software Solutions

- · Three orders of magnitude less in energy consumption
- Two orders of magnitude less in time consumption

Secret Key Cryptography: Simulation Results for 100 Mbit data

using AES;

	Clock cycles	Power consumption
Software	5 357 031 250	178500 mWs
Hardware	10 937 500	66 mWs

Public Key Cryptography: Simulation results for a single elliptic curve point multiplication (B233);

	Clock cycles	Power consumption
Software	14 321 826	478 mWs
Hardware	90 404	0.8 mWs

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2005 - All rights reserved

Dual² Crypto Chip

• Dual Crypto Support:

Secret Key Cryptography: Advanced Encryption Standard (128bit) Public Key Cryptography: Elliptic Curve Cryptography (233 bit)

Dual Interface

PCMCIA Cardbus

· Characteristics

	AES (128bit)	ECC (233bit)
Throughput @33Mhz	42Mbit/sec	0.85 Mbit/sec
Power consumption @33MHz	9,59 mW	56,85mW
Complexity KGates	14.44	27.26
Rate (clock cycles)	100	9000
Size (mm ² @ .25µ Technology)	1.01 mm ²	2.11

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

2005 - All rights reserve

Conclusions & Research Challenges Ahead

- · Current situation
 - Technical means to protect communication are available
 BUT: data given away still cannot be controlled
 BUT: High security level and long up times are still contradicting
- Sensor Networks & RFID technology are worsening the situation
 Direct recording of data (sensor measuring parameters of the user)
 Indirect recording e.g. groceries are tagged and gather data
- · Open issues

Management of security setting of mobile devices Firewall protection on the mobile device

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2005 - All rights reserved

